Exercise 26

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow 0} x^{3}=0
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad|x-0|<\delta \quad \text { then } \quad\left|x^{3}-0\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x|$.

$$
\begin{gathered}
\left|x^{3}-0\right|<\varepsilon \\
\left|x^{3}\right|<\varepsilon \\
|x|^{3}<\varepsilon \\
\sqrt[3]{|x|^{3}}<\sqrt[3]{\varepsilon} \\
|x|<\sqrt[3]{\varepsilon}
\end{gathered}
$$

Choose $\delta=\sqrt[3]{\varepsilon}$. Now, assuming that $|x|<\delta$,

$$
\begin{aligned}
&\left|x^{3}-0\right|=\left|x^{3}\right| \\
&=|x|^{3} \\
&=|x||x||x| \\
&<(\delta)(\delta)(\delta) \\
&=(\sqrt[3]{\varepsilon})(\sqrt[3]{\varepsilon})(\sqrt[3]{\varepsilon}) \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 0} x^{3}=0
$$

